Heliconias are found throughout the Neotropics and are actually quite common in the rainforest. This plant is often acquired in order to provide temporary protection to young cacao plants. Meanwhile in certain areas, the leaves are used in housing to create roofing, with the plant fibre being used to make paper.
Water collects in the bracts of the straight stems, which provides a habitat for many species of tiny aquatic organisms.
Truss Matrix
Having looked briefly at the plant and seen what geometry it takes especially on plan a technique was derived from the form ‘Michell Truss’ to critically compare different experiments. Options 01 and 02 gave a better result of the geometry as the space internally was reduced to a minimum.
Truss Formation – Iteration 1
Having explored the geometry of the plant, physical experiments were carried out to explore the potential for a truss forming. This particular iteration gave no depth to the curve forming as all the ply strips were cut out at the same length.
Analysis Of Depth – Iteration 2
In order to give depth to the geometry and to make it three dimensional experimenting with ply was key three different lengths of ply strips were cut out to give a varied result. Option 03 gave a better result as the larger depth caused from the strips allowed for a smaller surface area at the top with minimal space impact.
Truss Formation – Iteration 3
Experiments With Ply – Iteration 3
Having explored the geometry at small scale it was necessary to test it at a larger scale with ply as a main material. A 1000mm by 600mm ply sheet was used to form the truss geometry at a larger scale. Through the method of soaking the strips of ply in hot water I was able to get a better curve result allowing for more flexibility of the form.
Truss Formation – Iteration 4
After a series of single small and large scale truss forms, stitching the geometry gave a interesting result to the perspective of the truss allowing for a matrix to unfold.
Experiments With Ply – Iteration 4
Two leaf trusses were joined together at a 45 degree angle then joined with another set through the strips of ply in allowing for a flow of form. Through this method a stacking effect was to be achieved, reflecting upon the original geometry of the plant Heliconia.
Digital Experiments – Arraying form
The following arrangements show the bunching of the geometry resulting to form a circular tower as a potential proposal for design.
Digital Experiments – Sequencing
A set of sequences were explored in order to evaluate which pattern simulation would result in the least amount of internal space between the connecting truss forms.
Digital Experiments – Surface Tessellation
The command ‘Loft Curve’ was used to tessellate a single truss form in Grasshopper. The tool Brep shape was then added to give depth to the curve lines used to form the surface.
The study of inflatable origami derived from the investigation of the Mimosa Pudica plant, which closes its leaflets when disturbed. The leaves fold inward and droop when touched or shaken, defending themselves from harm, and re-open a few minutes later. When the leaves are folded it makes the plant appear smaller, whilst simultaneously exposing sharp spikes on its stem.
Mimosa Pudica structure
Stimuli which causes Mimosa Pudica leaflets to foldChange of turgor pressure within cells to cause leaflets to close
The plant folds its leaves as a result of a small change of turgor pressure in the plant cells which regulates the significant movement of the leaflets. In order to investigate this pressure change through modelling, two balloons are used and positioned at the base of the fins, mimicking the pressure change of the Mimosa Pudica. The model displays how a small increase of pressure, in this instance air, can create a more significant movement, acting as a hinge.
To control the angles of the tilt, a balloon has been made from paper using a tailored origami template which tilt the fins forward and inwards, replicating that of the Mimosa Pudica leaf movement. The origami balloon is comprised of two hinges, each one tilting in a different direction. When inflated, the first hinge expands, tilting the connecting fin forwards. When more air is blown into the balloon, the second hinge is inflated, tilting the fin inwards.
Origami balloon inflation sequence
As shown above, the origami balloons can control the desired angles of the tilts. When more air is blown into the balloons, it expands and the origami unfolds to reveal another lock position.
Following from the previous study, a series of balloons are created which combine the hinge movement with a rotational movement; the rotation origami balloon twists when inflated. To investigate the potential lock motions of each variant, the hinge and rotation balloons are combined in angles and stacks to provide alternative movement sequences. Below displays a matrix table, showing the hinge:rotation variables and their outputs.
Origami balloon matrix
Each origami balloon type provides an alternative folding sequence with either 1, 2 or 3 locking positions. These can then be manipulated as required, combining multiple balloons or re-dimensioning to suit their design intent.
One of the two principle origami balloon types is the hinge. When inflated, the balloon has the ability to tilt associated planes, creating a significant movement from a small inflation. The diagrams below show the digital simulation of the movement, created in Grasshopper. Hinges can be combined with rotation origami balloons and other hinge balloons to create a sequence of tilting, rotational movements.
The second principle origami balloon types is the rotation. When inflated, the balloon has the ability to rotate, which can subsequently rotate any associated planes.
Rotation origami balloon
In order to create the grasshopper simulation, each origami balloon must be evaluated to extract each point of the shape. Once the points have been determined, they are allocated a series of values which determine the folding motion of the origami. The script must be programmed to prompt specific points to fold into one another.
Grasshopper hingepoints
Each origami model has a unique template which determines the angles of rotation and tilt. The templates are a combination of mountain and valley folds, each one carefully designed to ensure that when inflated, the balloon expands in the desired motion.
Origami templates
The origami system is then translated into a field array to study how the balloons can operate simultaneously.
1
To create the array below, a sequence of fins have been assigned to each balloon in over-lapping arrangement which can be used to parametrically open and close the panelised surface.
The next array acts similarly to a shutter system, displaying how a series of fins can be associated to one another to create a sequence of movements. The more inflated the balloon, the more vertically the associated fin will be, pulling each connecting fin towards it and thus retracting the series of panels.
Following from this, examples of the origami balloon field array mapped to a shape are studied, providing an insight as to how the array could be applied to an object. In the field map below, the panels are more open towards the top of the shape and are closed at the sides. In practice, this could be a result of the balloons inflating to further locking positions towards the top of the structure as a result of more exposure to sunlight /air flow which could increase the expansion of the origami balloon.
Origami balloon field mapped to shape
The below panelised field map displays the sequence of an interlocking array. The surface is more closed where the uninflated origami balloons are located. The interlocking sequence becomes more open once the origami balloons have inflated further, showing how the balloons can be manipulated to determine the transparency of a plane.
Origami balloon field mapped to surface
The origami balloon studies thus far have focused on individual balloons with separate associated end-effectors. To develop the scope of the origami balloons, a series of balloons connected by tubes has been constructed. Each origami balloon in the sequence shares the same air input system, and as a result develops a sequence of movements.
Physical origami balloon linkage modelDigital origami balloon linkage model
The creation of origami models lead to the study of paper as a material, and its position within the environment. Research into the paper manufacturing industry uncovered how masses of water and deforestation takes place as a result of paper manufacturing, with 14% of global deforestation solely for paper production. This prompted the investigation of recycled paper.
Paper industry statistics
The process I undertook to make the recycled paper required shredding old, disused paper found around the studio and recycling bins. The shredded paper is then mixed with water and blended to break down the fibers, converting the material into a pulp. The pulp is then laid onto a frame, the dimensions of which determine the sheet size. The pulp is removed from the frame, sponged and dried to create a new usable paper sheet.
Recycled paper making process
Paper is coated with wax to seal Matrix of paper sheets, with varied recycled paper compositions and weights
Oil can be used to coat the sheet which increases the transparency of the paper. Once the oil is completely dried, the paper remains transparent. Image above shows the same two sheets of hand-made recycled paper, with the one on the right coated in oil.
Palm trees are angiosperms, which means flowering plants. They are monocots which means their seeds produce a single, leaf-like cotyledon when they sprout. This makes palms closely related to grasses and bamboo.
Components of Palm Trees
Palm Growth and Decay Process
Palm Tree Information
Mimicking the Geometry
This mature palm shows how the pattern originally seen in the young plant, forms a distinct mathematic pattern known as ‘Phyllotaxis’. This is a pattern with reoccurs throughout nature and is based on the Fibonacci sequence. In order to try to understand the use and formation of the palm fibre, the overall formation of the palm stem needed to be mathematically explored.
However, redrawing the cross-section of the base of the palm plants allows a better understanding of the arrangement of the palm plant.
Palm Frond Arrangement
This exercise allows models to be made to recreate the patterns found in palm plants. By engineering plywood components, the basic shape of the palm geometry can be made into a physical model.
Re-creating Palm Base
This was pushed further by curving the plywood components to make extruded palm structure models
Extended Palm Structure Model
Three-Dimensional Palm Model
The arrayed components can then be altered so that the base of the models form regular polygon shapes. Doing this allows the potential for the structures to be tesselated. Using different numbers of components mean the structure can then be tested for strength.
Tessellation Models
Palm Wine
There are hundreds of used for palm fruits, this the plant producing materials which range from durable, to flexible to edible. One of the more interesting ones if the production of palm wine using the sap from the tree. Within 2 hours of the wine tapping process, the wine may reach up to 4%, by the following day the palm wine will become over fermented. Some prefer to drink the beverage at this point due to the higher alcohol content. The wine immediately begins fermenting, both from natural yeast in the air and from the remnants of wine left in the containers to add flavour. Ogogoro described a ‘local gin’, is a much stronger spirit made from Raffia palm tree sap. After extraction, the sap is boiled to form steam, which is then condensed and collected for consumption. Ogogoro is not synthetic ethanol but it is tapped from a natural source and then distilled.
To understand the fermentation process more clear, the process of fermenting sugar to make wine has been undertaken.
Testing Palm Wine
Alternative Fuel
The distillation of the wine can be used to make bio-ethanol. This production of this fuel can act as a sustainable alternative to fossil fuel energy, which is overused and damaging to our environment.
How Much Energy?
Future Proposal
The developed structure, as well as the production of palm wine and bio-ethanol, can be collaborated to develop a programme, which provides sustainable energy, within a space that is inviting and exciting.
The production of bio-fuel releases a lot of carbon dioxide. In order to ensure the process does not impact the environment, this needs to occur inside a closed system, so the CO2 does not enter the atmosphere. This can be done by using the properties of a Solar Updraft Tower. Carbon dioxide released from the fermentation and distillation processes can be received by palm trees for increased photosynthesis, while the excess oxygen from the trees provides fresh air for visitors.
Form 01 – Solar Updraft Tower Implementation
The fermentation process can be controlled within an isolated area of the model.
Form 02 – Fermentation Implementation
The Distillation process, which requires a store of water for cooling, can also be conducted in an isolated area of the model, with apparatus incorporated into the structure.
Form 03 – Distillation Implementation
The final proposal will be a combination of all three forms
The Cycas Thouarsii (Madagascar Sago) is a subtropical plant from the Genus: Cycas. Their resistance to hurricanes, wildfires and droughts is part of the reason for their continued survival to the present day. Understanding the structural composition of the plants will help establish what naturally occurring systems allow to the plant to be so durable.
The stems of the plant show utilise a V/U shaped structure which improves stability.
Testing variations of the ‘V’ shaped base inspired by the Cycad will help understand the relationship between a curved profile and strength/durability.
This Investigation shows how different curves perform under gravitational load.
Curve Test: Paper Cantilever I
The experiment began with pieces of paper cut at the same length. Then they were cut in length until the piece of paper stayed upright under its own weight.
Curve Test: Paper Cantilever II
The geometries were produced in Grasshopper, utilising the graph mapper for mathematical curves. Since the Cycad plant has a stem in the shape of a Parabola / V, I began by testing how increasing the depth of a parabola curve can increase the performance of the paper cut out.
Following the initial experiment, the other pieces of paper that failed were trimmed until they stood upright against gravity.The Length of each extrusion was measured, which again found that the ‘Circle, Ellipse, and Sinc’ Curves were the most structurally sound. The parabola curve also performed greater than expected, with a similar extrusion length to the Sinc Curve.
Curve Test: Plywood Cantilever
The purpose of the experiment was to see if Plywood performs in a similar way to paper when conducting the same tests.
In order to get the plywood to bend into the desired forms, the plywood was initially scored by the laser cutter on one side of the sheet. These scores allowed gaps to be produced between the sheets of the plywood when bending.
Plywood Array :
The purpose of this experiment is to understand how the curved plywood experiment performs under various arrangements. The base model features arrays with varying angles, and distances apart in order to better understand how the curves can look and connect together.
The second part of this investigation set out to understand how the plywood reacts to varying degrees of tension. String tension members were connected to the cylindrical array in a similar manor to the arrangement found in pine cones.
Plywood : 180 x 360
Utilising the curve of the plywood, investigation was conducted into the various degrees in which the wood can bend.
Bananas are the 4th most important crop after rice, wheat and corn. 135 countries grow bananas producing 145 million tonnes per year. The banana industry is worth 52 billion dollars and 400 million people rely on the crop as a staple food or stable source of income. These high figures of production and the aim of producing bananas as cheap as possible for high profits means poor working conditions for workers and a lot of waste. There is a great potential in banana waste i.e. the pseudo-trunk, to be used as an extra source of income by making textiles or using it as a building material.
Banana Plant | Musa
The banana fruitSection through the fruit
Statistics
Production
Growing
Growth Cycle
Telescopic Growth
The Pseudo-trunk
Geometrical analysis of the pseudo-trunk
Otherwise known as the pseudo-stem or ‘false trunk’, the trunk of the banana tree is in fact made out of tightly packed leaves. The cells shown in the cross section transport all the nutrients and water from the earth to the rest of the plant. At the moment, the pseudo-trunk is waste product to the banana industry. It is a heavily un-utilised resource that can be used to make textiles or bio-fuel.
Form testing of internal structure of pseudo-trunk using tightly rolled pieces of paper
Form experimenting of the pseudo-trunk structure using paper made from banana
Using the pseudo-trunk waste for useful materials
By-products of the pseudo-trunkFibrous strands from inside to trunkMechanical fibre extraction processBy products of the banana pseudo-trunk: fibre, yarn and fabric. All 100% banana fibre.
Banana Rope (Manila Rope)
Banana rope has been used historically for things such as ship lines, towing, climbing and landscaping. Manila rope gets its name from the capital of the Philippines, Manila, as a lot of the rope is made there.
The rope is flexible yet non-stretching, durable and resistance to salt water damage. For these reasons its a common choice for ship lines, fishing nets and decorative purposes. It’s used in gyms due to its ability to absorb sweat and therefore act as a good grip.
Weaving techniques using banana rope and yarnStructure made from weaved banana rope and banana yarn
Study using the weaved banana yarn to create space
Combining the rope and the yarn to be used in construction
A time based construction enables the opportunity to create little pools of water which could later be used to cultivate land and assist with other structures being built. This structure would be used as an irrigation storage unit where equipment for the pivot irrigation are held.
Gum City provides an opportunity to look into a market which is not meeting its current demand by 30000 tonnes. Through a unique construction process it is possible to create elegant and appealing structures where you would not expect it usually.
[noun] (ˌtɛrɪdəʊˈmeɪnɪə). Obsolete – an excessive enthusiasm for ferns. Also known as fern fever.
A study on symbiotic relationships and reciprocal structures inspired by ferns.
MATERIALS & STRUCTURE
I chose to begin by looking into the Fern plant and its’ form. All ferns are Pinnate – central axis and smaller side branches – considered a primitive condition. The veins never coalesce and are known to be ‘free’. The leaves that are broadly ovate or triangular tend to be born at right angles to the sunlight.
I then decided to model a leaf digitally, attempting to simulate the fractal nature found in a fern frond and the leaves to 3 degrees of fractals. I then simplified the fern frond to 2 levels to allow for easier laser cutting and structural stability. The large perimeter meant, therefore, there was a large amount of surface area for friction so I explored different configurations and tested their intersections.
I then selected the fern frond intersection I found to show the best stability out of the tested ones shown previously. By arraying them further, they began to curve. When pressure is applied to the top of the arch, the intersections are strengthened and the piece appears to gain structural integrity.
When a full revolution is completed, the components appear to gain their maximum structural integrity. Since I had decided to digitally model the fern frond, I was able to decrease the distance between the individual leaves in the centre of each frond through grasshopper. By doing this, the intersections connecting a frond with another were less tight in the centre than on the extremities of each frond, allowing for a slight double curvature.
Here, I began combining different quantities of vegetable glycerine, agar agar (extracted from red algae and used for cooking) and water. By changing the ratios of agar and glycerine I was able to create 2 different bioplastics: one being brittle and the other flexible. See above for the flexible sample and below for the brittle sample. Both samples appeared to fail under the same 7 Kg-force.
I continued to iterate the leave by decreasing any arching on the leaf and finding the minimum component, the smallest possible component in the system. By arraying a component formed of 3 ‘leaves’ on one hand and 2 on the other, I would be able to grow the system in one direction as before due to the reciprocal organisation and in the other direction by staggering the adjacent component. I scaled up this component to view what difficulties emerge when the component is larger. The stress tests of this arrangement showed a phased failure of the ‘column’. Instead of breaking at once, row by row of components failed with time, outwards-inwards.
I extracted the minimum possible component from the previous iterations and attempted to merge the system with firstly, 3d printed PLA bioplastic components and then with an algae bioplastic produced at home. I became interested in the idea of being able to coat the wood in an algae bioplastic substituting the need for any epoxy for waterproofing. The stress tests for this component showed a surprising total of 956 kg-force for it to fail.
BOTANICAL STUDIES
The minuscule floating plant, also known as Mosquito Fern is a genus of 7 species of aquatic ferns. It holds the world record in biomass producer – doubling in 2-3 days. The secret behind this plant is its symbiotic relationship with nitrogen fixing cyanobacterium Anabaena making it a superorganism. The Azolla Provides a microclimate for the cyanobacteria in exchange for nitrate fertiliser. Azolla is the only known case where a symbiotic relationship endures during the fern’s reproductive cycle and is passed on to the next generation. They also have a complimentary photosynthesis, using light from most of the visible spectrum and their growth is accelerated with elevated CO2 and Nitrogen.
Azolla is capable of producing natural biofertiliser, bioplastics because of its sugar contents and biofuel because of the large amount of lipids. Its growth requirements can accommodate many climates too, allowing it to be classified as a weed in many countries. I was able to study the necessary m2 of growing Azolla to sequester the same amount as my yearly CO2 emissions, resulting in 57% of a football field equivalent of growing Azolla to make me carbon neutral.
REAL LIFE ACTION
I contacted the Azolla Research Group at the University of Utrecht and they kindly accepted to give us a tour of their research facilities and provided us with an in-depth insight into the aquatic fern. I decided to approach the Floating Far with a proposal of using Azolla in their dairy process. They agreed to explore this and I put them in contact with the research team in the University of Utrecht, who are now cooperating with the dairy farm’s team in decreasing the carbon emissions of the cows on the farm.
SITE LOCATION
Based on this latter event taking place outside the initially academic intention of this visit, I decided to use the Floating Farm as a site and a starting point for my Brief 2 proposal. The floating farm is intended to stand out and create an awareness of the possibility or idea of living on water and taking ownership of one’s food production, which seems to match the potential uses and benefits of Azolla. The researchers at the University of Utrecht expressed their need of getting the advantages of this plant to a wider public and this remained in my mind, possibly being the main reason behind my approach to the Floating Farm.
The Floating Farm sits in the Merwehaven area or M4H in the Port of Rotterdam. Highlighted above are industrial factories in the area which are potential sources of wooden pallets to be used in the construction of the proposal.
In 2007, Rotterdam announced its ambition to become 100% climate-proof by 2025 despite having 80% of its land underwater, therefore it was important to look at the flood risk and tidal change. The Merwehaven area in Rotterdam seems to have an average tidal change of 2 metres which I thought could be taken advantage of in a mechanical system.
ARCHITECTURAL PROPOSAL
The architectural proposal consists on emphasising a circular economy with a focus in agriculture by creating a Floating District that accompanies the Floating Farm and is comprised of: 1) Azolla – Dwellings combining a series of residential units for the increasing number of young entrepreneurs in the RID with three central cores growing stacked trays of Azolla as in vertical farming. 2) The floating farm which continues to produce dairy products and a Bamboo growing area to maintain the upkeep of floating platforms and construction of new dwellings. Floating rice paddies are grown in the warmer months in a closely monitored system of permaculture. 3) A production facility which concentrates on research and development into Azolla as well as retrieving the water fern’s byproducts such as bioplastics extracted from the sugars biofuel, from the lipids and bamboo plywood lumber for the construction of the expanding Floating District.
By using a similar system to a camera aperture ring, the mechanical device pictured above would automatically harvest the necessary Azolla twice a day, providing an everlasting continuous harvest for the Azolla to continue to grow. The Azolla is then collected and continued to be used throughout the proposal.
The dwellings’ facade is a result of a closely analysis of harmful and beneficial solar radiation. By setting an initial average temperature to monitory, the facade will block sun that naturally would drive the temperature above the chosen one and the beneficial would bring the temperature up. This shading serves a buffer zone that surrounds the internal living spaces and is used to grow vegetables for the residents.
Semi-public spaces are located on the ground floor (open plan kitchen and living) and bedrooms are located on the first floor, surround a central spiral staircase for circulation.
Gum Arabic is a natural adhesive grown on the Senegalia Senegal tree. This tree grows in 6 years and only requires 100-200ml of water a year, this is a tree which has evolved to survive in the desert.
How can a third world country like Sudan can use a natural adhesive to act as a binder? How can we use the natural terrain as a framework for creating complex and controllable design?
Below the images illustrate how the construction process works.
I have designed a time-based construction programme. It begins with a setting out plan where string is used to determine where an industrial hoover (which usually transfers sand) sucks out sand and it is spewed out elsewhere. When my mix has been added to these cone shape voids the hoovering process is repeated but this time a thick layer of the Gum Arabic, Clay and Sand mix. The mixture is then lightly misted with salt water which causes the Gum Arabic to act as the binder. The Desert’s scorching sun then does the rest to solidify the material. Excavation around the land enables a structure which stands upright.
After exploring this method myself I discovered some interesting variations depending on whether I suck the sand first or pour it
I explored these forms digitally.
If you are wondering how I got to this point, well I will jump back to the beginning.
It started in Kew Gardens London, where I chose to study a plant and look into the early stages of bio-mimicry. I chose to study the Lotus Pod (Nelumbo Nucifera) found in Asia.
I wanted to find consistency between the holes of the flowers. Therefore I purchased 40 flower heads and begun experiments to study the arrangement of holes and the parameters within the plant. After experimenting I discovered that flower heads sized between 50-60mm have a gradient like effect where the largest hole is 3.5 times larger than the smallest. I therefore used Frei Ottos sand draining technique to explore what forms can be achieved with the arrangement of holes being that of the Lotus Pod.
After designing and building a smart box I began a matrix study.
I then Explored the parameters of each of these and found out that this sand grain drains at 30 degrees.
From this point I went on to look at how to solidify sand in its current form and that is when I discovered the properties of the Gum Arabic and began to explore. I had began to mix the mixture with sand and clay.
I then explored a site based on where Gum Arabic is produced and where sand and clay is in abundance. Therefore leaving me with Al-Fashir Sudan.
I then Explored the construction techniques using the gravity. Using the terrain as a natural formwork which can be moulded.
I then continued to design a construction process which requires less labour and would achieve high quality design attributes. Which is where I began with the hoovering process.
The main aspects of the Corn-Crete House system are the use of space, material efficiency and relationship to site. The way space is shaped influences human behaviour. According to a research paper done by KAYVAN MADANI NEJAD in 2007 the curvilinearity of interior design directly affects the way people feel inside them. It concluded that the more curvilinear a space is the more comfortable, safe, relaxed and friendly it feels. My project builds upon this argument. Research also shows that the concrete industry is a major environment pollutant. Cement is the most damaging ingredient. I am proposing a new system which will be using less concrete & less cement thanks to: 1) corn residues partially replacing aggregate making the structure lighter and more porous 2) casting around inflatables resulting in curvilinear architecture suitable for compression which requires less tensile strength.
Meat consumption globally is ever increasing, especially in countries which are experiencing rapid increases in wealth such as India. Despite its population consisting of 337 million vegetarians, 71% of people living in India have a meat based diet. The amount of land required to produce meat is extremely more than the amount required to produce vegetarian food products. If crops are grown in greenhouses they require even less space, as the growing seasons can be extended and environmental factors controlled. This highlights how switching to a greenhouse-grown plant based diet has massive spatial advantages and is an efficient use of land.
There is also a huge incentive from the Indian government to encourage those who work in agriculture to use greenhouses rather than open land to grow their crops to increase reliability of harvest and income. However, the most popular greenhouse covering material in India is polyethylene sheeting, which needs replacing annually. This adds to the enormous amount of plastic waste which ends up in India’s open environment (85% of all plastic waste).
The site is located on the outskirts on Jaipur, Rajasthan, and is situated in existing agricultural land, adjacent to two poly tunnel greenhouses. The craft and paper manufacturing area of Sanganer sits just East of the site, which houses several paper production facilities using local raw materials like hemp and bamboo.
When researching alternatives to polyethylene sheeting, paper was investigated as a cladding material – it is cheap, lightweight, translucent and can be locally manufactured using raw materials such as bamboo fibers to increase its strength. To make the paper more weather-resistant, I sourced shellac resin flakes (a natural resin found on trees in India) and mixed a coating to apply to the paper.
Shellac coating mix process
Shellac coating on bamboo paper
To test the moisture resistance of the shellac coating, water is poured into a pool on the paper and left to soak. The water is not able to penetrate the surface of the paper and the underside of the paper is completely dry. Water runs off the paper without soaking through the sheet.
The coating also bonds to the fibers in the paper which increases its transparency. This is beneficial in the application of a greenhouse covering.
Inflatable origami air beams
Following from the inflatable origami studies for Brief 1 (see previous post), the paper origami modules are combined to create inflated beams for the greenhouse. The video below shows an initial study of the inflation sequence of the beams.
The air beams are modeled up digitally to test their form variations. The bottom right form allows for an increase in depth, creating more varied spaces beneath the beams and more opportunities for longer beam spans.
To test the air beams at a larger scale, I constructed a 1.8m wide model. I then used this to analyse its structural stability, and identify any weaker points in the beam.
The origami beam will arrive to the site pre-folded where it is then inflated, increasing ease of transportation.
Origami air beam unfolding sequenceOrigami air beam not inflatedInfill beams and cladding system
The infill beams sit within the main air beams to provide a structure for the facade. These infill beams are constructed using the same method as the larger beams and provide support for the reactive facade system.
Passive facade
Origami hinge balloons (developed during Brief 1) are treated with a black coating and tightly sealed. The black coating allows the balloons to absorb more heat, rapidly expanding the air within the balloon when they are exposed to intense heat from the sun. This test was carried out using the same temperatures in Jaipur during summer months.
Time lapse of solar balloon replication, the variation of heat determining the rate of expansion
The solar balloon is attached to a fin, and acts as a hinge. This will be used as a passive way to open and close the greenhouse facade to control intense over-heating in summer and ventilation.
Coated paper facade fins which open when the solar balloons are heated by the intense Jaipur sun. This ventilates and cools the greenhouse down in extreme weather conditions.
Facade opening sequence
Community farming
The greenhouses will be shared by multiple families and will provide each family member with enough food to be self-sufficient. Communal farming is becoming more common in India – growing crops using the same resources and centralising power supplies to increase efficiency. In addition to this, many rural villages in India are forced to be self-sufficient due to a lack of connection to resources. My project will aim to combine these characteristics to create a communal self-sufficient greenhouse village in South Jaipur.
Each greenhouse will have a series of connected homes which open into the greenhouse. These will be constructed from rammed earth – the thermal mass of this material will help to prevent overheating during the summer in Jaipur’s arid climate, whilst retaining heat during winter months. The geometries of these homes relate to the form of the greenhouse, and are constructed from single curvature faces.
Each individual requires 40m2 of greenhouse space to grow enough food to maintain a self -sufficient diet. The above matrix displays the possible greenhouse typologies based on 2 person, 3 person and 4 person homes.
2 person home exampleHome typologiesExisting agriculture land on siteRadiation study, Jaipur
“Now is our chance to recover better, by building more resilient, inclusive & sustainable cities.” António Guterres, Secretary-General of the United Nations.
We are very excited to be back for a new year. This year our brief is focused on Arcology, a term coined by Paolo Soleri which is the combination of Architecture and Ecology. Below is a few links describing the year ahead:
Sustainability first! DS10 looks for novel solutions to sustainability issues in all its forms. We are interested in realistic and efficient buildings that contribute to a more sustainable society. We value digital exploration on the threshold between structure and biophilic ornament, coupled with thorough material testing DS10 believe that architecture should be joyful and that architects should think like makers and act like entrepreneurs. We like physical experiments tested with digital tools, for analysis, formal generation and fabrication.
Our past students have raised funds on Dragons Den and won StartUp AwardsOur Reading ListWe will be studying pioneers of eco-designEliza Hague’s Shellac Coated Inflatable Origami GreenhouseBy ecology we understand the total science of the connections of the organism to the surrounding external world. -Ernst Haeckel “Nature is painting for us, day after day, pictures of infinite beauty if only we have the eyes to see them.” ― John Ruskin Through dedicated digital classes in Grasshopper we will be exploring structural ornamentation techniques such as floral and vegetal motifs through the ages, filigree ironwork, spiralling and curving volutes, stone scrollwork, and replicating, evolving and reappropriating them digitally and physically. Arcology is a combination of architecture + ecology creating an ever evolving large scale, dense and highly compacted building. Abanoub Reyad and Yvonne OnahUrna UrangaJessmine BathThis year’s siteBiosphere 2
Brief 01 How do natural structures and organisms interface with their environment? We seek an architectural language that relates to and speaks to the natural world rather than standing apart from it, by designing a performative urban modular Artefact that brings living nature into the city. The Artefact will be highly site specific, half man-made and half grown from nature.
Chosen Area of Interest – Fungi / Mycelium
Fungi absorb nutrients through vast underground networks of white branching threads called mycelium. Though hidden in the soil and sometimes mistaken for roots, mycelium is actually the proper body of a fungus. Mushrooms are the fruit, appearing only when conditions for spreading their spores are just right.
Mycelium plays a vital role in the decompositon of plant material but also can form a symbiotic relationship with the roots of certain plants, called mycorrhiza. Most plants depend on mycorrhiza to absorb phosphorus and other nutrients. In exchange, fungi gain constant access to the plants carbohydrates. Often, neither the mushroom nor the plant will grow without a mycorrhizal partner.
A man-made cocoon woven from biodegradable rope material inspired by the weaving of silkworms. It can be constructed in any softwood tree that is strong enough and that has a convenient distribution of branches. The tree is scanned and converted into a 3D model where a custom cocoon design is created. The cocoon is both lightweight and strong as it is a tensile structure (secondary structure) wrapping around a tree (primary structure). It aims to bring people from the city closer to nature.
Trees & Humans
The following images will introduce my artefact into wider context. There are two possible scenarios, which could benefit from my artefact, one of which will be further developed in the upcoming term: 1) forest bathing as a way to for the human to reconnect with nature 2) rewilding as a way to both regenerate the land and human spirit
Photogrammetry
OBJECTIVE The aim of photogrammetry was to create the most realistic three-dimensional representation of a tree, which could then be incorporated into computational experiments making the design process much more efficient.
LIMITATIONS Photogrammetry generated about 60-70% of tree volume leaving out the detailed branches at the outer ends of the tree. 3D scanning would be a possible solution, however, unavailable at the moment.
Combining the Virtual and Real
REAL 3D-model of a real tree VIRTUAL wrapping/weaving around the 3D-model of a real tree virtually
Connecting points in space
OBJECTIVE This section of my portfolio focuses on exploring the ways in which points can be connected with strings – in both two and three dimensions. The gained knowledge from this section informed my virtual weaving experiments (previous section)
LIMITATIONS: When connecting regular geometries, it is much easier to find the differences between different connection techniques. The result looks also much more organised and neat. However, what I am aiming to do is apply these connection techniques to irregular geometries of trees, which is a big challenge.
Wrapping & weaving around real trees
This part tracks my learning of the weaving behaviour of silkworms. I have done my own weaving experiments, both physical and virtual to try and understand how weaved tensile structures work. Going forward, I would like to incorporate some of the observed physical principles into my design (into the Grasshopper script).
Rotherhithe, South west London, is a redeveloped, residential area with a close-knit community of residents. The site is currently under planning with proposals to build a multi-use housing development around the gasometer.
In 2019, the Rotherhithe Gas Holder company opened a temporary Hub to receive resident feedback for the planned development. Lots of feedback was in relation to the heritage of Rotherhithe, with residents requesting the history of the site is maintained and celebrated.
The name ‘Rotherhithe’ derived from the Latin translation of ‘Landing place’, as it was part of the Docklands trade, with raw materials and goods being imported to the site via ships from around the world.
Rotherhithe Warehouse, 1960
The inspiration behind my proposal was to put this heritage request at the forefront of design consideration, and the artefact brings back the plants that grow herbs, fruits, spices and botanicals that were once imported into Rotherhithe.
PHYSICAL EXPERIMENTATION
Taking inspiration from the death of a coral skeleton after bleaching, the artefact is based on a replicated ‘mesh’ aspect of strong and resilliant branching coral.
DIGITAL EXPERIMENTATION
Taking the resillience of a coral mesh, I have experimented on Grasshopper with different methods of creating the initial design concepts of my artefact. The mesh will act as a supportive shell, with plants integrated throughout.
MESH TO STRUCTURE
The Grasshopper experiments are transformed into various containers based on the concept of Wardian Cases, providing various moisture, light and temperature conditions for each individual plant.
With climate change and the world turning to new sustainable alternatives of producing energy and recycling materials, we as designers should be thinking of new ways of reusing waste and using resources available to us. Human waste has many uses and should not just be flushed down the toilet and sent away to the sewers. It should be returned back to the soil with all it’s nutrients to help grow food, instead of the use of chemical fertilisers.
Both urine and faeces are useful resources in their own ways but have to be separated out. I have designed a toilet and system which splits the two.
Human excrement if kept in anaerobic conditions in a sealed container will start to produce methane. The higher the temperature, the faster the material decomposes, and the higher the rate of production of methane gas. This methane can be used as an energy source.
Urine can be diluted to make a natural fertiliser which should be applied directly to the root system of the plant. It is best to do this immediately or within 24 hours to ensure that ammonia is not released which causes it to smell. However animals will be able to detect the smell and hence it acts as a natural animal repellent.
Urine fertiliser is particularly beneficial for plants which require a lot of nitrogen to grow like tomato plants.
I was inspired by the unusual, striking form and scale of the baobab trees, native to Africa. They are sometimes referred to as “the upside down tree”. They swell up drawing in all the water they can, storing it inside their trunk like a water tank, to ensure they will survive in the dry months.
I explored ways of achieving this swelling geometry on Grasshopper, and used the plugin called Fattener to grow the shape in different areas, controlled by separate parameters.
I then unravelled this radial shape, and tested other options to see which one received the most sunlight all year round.
The toilet pods needed to have the right balance between privacy for the users, and receiving the most sunlight for the tomatoes. I used expressions on Grasshopper to cull the faces of the mesh in a certain way to make sure the parts of the pods that you could see into were made from timber, and the other parts would be made from bio-polycarbonate to let in sunlight for the tomatoes.
Instead of this stepped geometry achieved from culling faces, I added veining with the new Rhino 7 multipipe tool and separated the geometry this way.
Using the plugin Anemone with Grasshopper, I analysed the how the rain would fall on the pods and the overhang to collect rainwater to mix with the urine to then fertilise the tomato plants.
Brief 01: 3D Lattices/ Urban Crystallography & Self-Sufficient Bio-Machines: At the start of the year, coupled with Grasshopper training we will be looking at lattices as a granular spatial organising principle. From molecular systems to quasi-crystals, nature organizes itself through space efficient, resilient and complex arrangements. We would like to start the year with a study of all these three-dimensional systems as an exercise to understand the many ways structures can be arranged in space. Using timber struts and nodes, or surfaces and hinges, whether defining space packing volumes or porous three dimensional grid shells, the modularity of the systems allows us to work at all scales. However for the first brief we expect you to design and build a self-sufficient small scale bio-machine interacting with the given sites. Like a tree absorbing carbon whilst creating timber and fruits, your architectural system will be a blend of technology and nature in the urban context.
Brief 02: Eco-Parametric Urban Infrastructures to combat climate change Nature does not make waste, everything is reused and feeds back into the system. DS10 will learn from this by applying the principles of permaculture, regenerative agriculture and renewable energy generation to propose Eco-Parametric Urban Infrastructures. You will design and test large scale infrastructures tightly interwoven into and above the urban fabric of London’s train tracks which immersively integrate nature into the city using your 3D lattices as a reference. We are seeking new architectural ideas which address energy needs in the age of the circular economy. Your mixed use infrastructure will create energy and deal with its waste to close the loop whilst helping people live better and healthier lives and create an economy in the process. Proposals may include self sufficient communities and economies, cradle to cradle business ideas, inhabited bridges forging connections between different sides of the tracks and structures which actively contribute to the area such as carbon capture devices, solar collectors, pollution scrubbers etc,
Zainab Kahn, The Spirulina Bank
Site: The underused spaces over the existing railway tracks of central London will form the foundations for exciting large scale mixed use structures, creating new connections and a new hyper dense and hyper sustainable urban fabric.
Output: Rather than a traditional paper portfolio we will focus on digital representation techniques such as animations, high quality digital renders which explain the process of your work.You will become a member of the WeWantToLearn.net community (1.7 million viewers) sharing your research and studio submissions to inspire and contribute to the wider design community. Blog posts will form part of your portfolio submission.